A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast
نویسندگان
چکیده
Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.
منابع مشابه
A systematic screen for morphological abnormalities during fission yeast sexual reproduction identifies a mechanism of actin aster formation for cell fusion
In non-motile fungi, sexual reproduction relies on strong morphogenetic changes in response to pheromone signaling. We report here on a systematic screen for morphological abnormalities of the mating process in fission yeast Schizosaccharomyces pombe. We derived a homothallic (self-fertile) collection of viable deletions, which, upon visual screening, revealed a plethora of phenotypes affecting...
متن کاملTo avoid a mating mishap, yeast focus and communicate
During mating, yeast cells must perforate their rigid cell walls at the right place to allow cell-cell fusion. In this issue, Dudin et al. (2015; J. Cell Biol. http://dx.doi.org/jcb.201411124) image mating fission yeast cells with unprecedented spatiotemporal resolution. The authors find that when mating cells come into contact, they form aster-like actin structures that direct cell wall remode...
متن کاملRoles of formin nodes and myosin motor activity in Mid1p-dependent contractile-ring assembly during fission yeast cytokinesis.
Two prevailing models have emerged to explain the mechanism of contractile-ring assembly during cytokinesis in the fission yeast Schizosaccharomyces pombe: the spot/leading cable model and the search, capture, pull, and release (SCPR) model. We tested some of the basic assumptions of the two models. Monte Carlo simulations of the SCPR model require that the formin Cdc12p is present in >30 nodes...
متن کاملProgress towards understanding the mechanism of cytokinesis in fission yeast.
We use fission yeast to study the molecular mechanism of cytokinesis. We benefit from a long history in genetic analysis of the cell cycle in fission yeast, which provided the most complete inventory of cytokinesis proteins. We used fluorescence microscopy of proteins tagged with fluorescent proteins to establish the temporal and spatial pathway for the assembly and constriction of the contract...
متن کاملCdc42 regulation of polarized traffic in fission yeast
Cdc42 is a key factor in the control of cell polarity and morphogenesis. Fission yeast Cdc42 regulates formin activation and actin cable assembly. Cdc42 is also required for exocyst function, contributing to polarized secretion. Additionally, Cdc42 participates in membrane trafficking, endosome recycling, and vacuole formation. We show here how Cdc42 is required for the correct transport/recycl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 208 شماره
صفحات -
تاریخ انتشار 2015